We present a simple but novel hybrid approach to hyperspectral data cube reconstruction from computed tomography imaging spectrometry (CTIS) images that sequentially combines neural networks and the iterative Expectation Maximization (EM) algorithm. We train and test the ability of the method to reconstruct data cubes of $100\times100\times25$ and $100\times100\times100$ voxels, corresponding to 25 and 100 spectral channels, from simulated CTIS images generated by our CTIS simulator. The hybrid approach utilizes the inherent strength of the Convolutional Neural Network (CNN) with regard to noise and its ability to yield consistent reconstructions and make use of the EM algorithm's ability to generalize to spectral images of any object without training. The hybrid approach achieves better performance than both the CNNs and EM alone for seen (included in CNN training) and unseen (excluded from CNN training) cubes for both the 25- and 100-channel cases. For the 25 spectral channels, the improvements from CNN to the hybrid model (CNN + EM) in terms of the mean-squared errors are between 14-26%. For 100 spectral channels, the improvements between 19-40% are attained with the largest improvement of 40% for the unseen data, to which the CNNs are not exposed during the training.
translated by 谷歌翻译
现代对高斯工艺的近似适合“高数据”,其成本在观测值的数量中缩放,但在``宽数据''上表现不佳,在输入功能的数量方面缩小了很差。也就是说,随着输入功能的数量的增长,良好的预测性能需要汇总变量及其相关成本的数量才能快速增长。我们引入了一个内核,该内核允许汇总变量的数量通过输入功能的数量成倍增长,但在观测数和输入功能的数量中仅需要线性成本。通过引入B \'ezier Buttress来实现此缩放,该块允许在无需计算矩阵倒置或决定因素的情况下进行近似推断。我们表明,我们的内核与高斯流程回归中一些最常用的内核具有非常相似的相似之处,并从经验上证明了内核可以扩展到高大和宽的数据集的能力。
translated by 谷歌翻译
TSNE和UMAP是两个最流行的降低算法,因为它们的速度和可解释的低维嵌入。但是,尽管已经尝试改善TSNE的计算复杂性,但现有方法无法以UMAP的速度获得TSNE嵌入。在这项工作中,我们表明,通过将两种方法组合为单一方法,这确实是可能的。我们从理论上和实验上评估了TSNE和UMAP算法中参数的完整空间,并观察到单个参数(归一化)负责在它们之间切换。反过来,这意味着可以切换大多数算法差异而不会影响嵌入。我们讨论了这对基于UMAP框架的几种理论主张的含义,以及如何将它们与现有的TSNE解释调和。基于我们的分析,我们提出了一种新的降低性降低算法GDR,该算法结合了先前来自TSNE和UMAP的不兼容技术,并可以通过更改归一化来复制任何一种算法的结果。作为进一步的优势,GDR比可用的UMAP方法更快地执行优化,因此比可用的TSNE方法快的数量级。我们的实施是使用传统的UMAP和TSNE库的插件,可以在github.com/andrew-draganov/gidr-dun上找到。
translated by 谷歌翻译
贝叶斯后期和模型证据的计算通常需要数值整合。贝叶斯正交(BQ)是一种基于替代模型的数值整合方法,能够具有出色的样品效率,但其缺乏并行化阻碍了其实际应用。在这项工作中,我们提出了一种并行的(批次)BQ方法,该方法采用了核正素的技术,该技术具有证明是指数的收敛速率。另外,与嵌套采样一样,我们的方法允许同时推断后期和模型证据。重新选择了来自BQ替代模型的样品,通过内核重组算法获得一组稀疏的样品,需要可忽略的额外时间来增加批处理大小。从经验上讲,我们发现我们的方法显着优于在包括锂离子电池分析在内的各种现实世界数据集中,最先进的BQ技术和嵌套采样的采样效率。
translated by 谷歌翻译
自动适应玩家的游戏内容打开新的游戏开发门。在本文中,我们提出了一种使用人物代理和经验指标的架构,这使得能够在进行针对特定玩家人物的程序生成的水平。使用我们的游戏“Grave Rave”,我们证明了这种方法成功地适应了三个不同的三种不同体验指标的基于法则的角色代理。此外,该适应性被证明是特定的,这意味着水平是人的意识,而不仅仅是关于所选度量的一般优化。
translated by 谷歌翻译
电子密度$ \ rho(\ vec {r})$是用密度泛函理论(dft)计算地面能量的基本变量。除了总能量之外,$ \ rho(\ vec {r})$分布和$ \ rho(\ vec {r})$的功能通常用于捕获电子规模以功能材料和分子中的关键物理化学现象。方法提供对$ \ rho(\ vec {r})的可紊乱系统,其具有少量计算成本的复杂无序系统可以是对材料相位空间的加快探索朝向具有更好功能的新材料的逆设计的游戏更换者。我们为预测$ \ rho(\ vec {r})$。该模型基于成本图形神经网络,并且在作为消息传递图的一部分的特殊查询点顶点上预测了电子密度,但仅接收消息。该模型在多个数据组中进行测试,分子(QM9),液体乙烯碳酸酯电解质(EC)和Lixniymnzco(1-Y-Z)O 2锂离子电池阴极(NMC)。对于QM9分子,所提出的模型的准确性超过了从DFT获得的$ \ Rho(\ vec {r})$中的典型变异性,以不同的交换相关功能,并显示超出最先进的准确性。混合氧化物(NMC)和电解质(EC)数据集更好的精度甚至更好。线性缩放模型同时探测成千上万点的能力允许计算$ \ Rho(\ vec {r})$的大型复杂系统,比DFT快于允许筛选无序的功能材料。
translated by 谷歌翻译
基于机器学习的数据驱动方法具有加速原子结构的计算分析。在这种情况下,可靠的不确定性估计对于评估对预测和实现决策的信心很重要。然而,机器学习模型可以产生严重校准的不确定性估计,因此仔细检测和处理不确定性至关重要。在这项工作中,我们扩展了一种消息,该消息通过神经网络,专门用于预测分子和材料的性质,具有校准的概率预测分布。本文提出的方法与先前的工作不同,通过考虑统一框架中的炼体和认知的不确定性,并通过重新校准未经证明数据的预测分布。通过计算机实验,我们表明我们的方法导致准确的模型,用于预测两种公共分子基准数据集,QM9和PC9的训练数据分布良好的分子形成能量。该方法提供了一种用于训练和评估神经网络集合模型的一般框架,该模型能够产生具有良好校准的不确定性估计的分子性质的准确预测。
translated by 谷歌翻译
空间变压器网络(STNS)估计图像变换,可以通过“放大”图像中的相关区域来改善下游任务。但是,STN很难训练,并且对转型的错误预测敏感。为了避免这些局限性,我们提出了一种概率扩展,该扩展估计了随机转化而不是确定性的转换。边缘化转换使我们能够以多个姿势考虑每个图像,这使本地化任务变得更加容易,并且培训更加健壮。作为另一个好处,随机转换充当了局部,学习的数据增强,可改善下游任务。我们在标准成像基准和充满挑战的现实数据集中显示,这两种属性可改善分类性能,鲁棒性和模型校准。我们进一步证明,该方法通过改善时间序列数据的模型性能来推广到非视觉域。
translated by 谷歌翻译